
TUTORIAL DDRESCUE

www.linuxvoice.com

Come with us, gentle reader, on an exciting
adventure into the world of data recovery.
There will be loss and sadness, a hostage-

taking mega corporation, a triumphant recovery, and
lessons learned. Plus a comic book bear with an
eye-patch. Welcome to the first draft of Bertie Bear and
the Disk of Corruption…

Chapter 1: An artist’s grief
It seemed like any other day for independent artist
Andy Clift, as he booted his Apple Mac to continue
work on the latest instalment of his comic book
series, “Bertie Bear and the Dagger of a Thousand
Souls”. But within seconds of hearing the familiar
start-up chime, his Apple turned sour. “Drive Error”, it
reported, refusing to proceed any further. Andy looked
on in dismay, his mind churning with frantic thoughts;
he knew he had backups of most of his files, but the
latest drawings of Bertie’s adventures had yet to make
their way off the reluctant drive. He packed his iMac
into a box and headed off to the nearest Apple store’s
“Genius Bar”.

Too late he found that the “Genius Bar” is something
of a misnomer. The staff there are better trained than
most sales assistants, but it transpires that there’s
not even an IQ test required, let alone membership of
Mensa, before a keen employee can be promoted to
the position. Suffice to say that the “genius” failed to
demonstrate any advanced skills beyond the ability to
send the machine to Apple’s service centre for a new
drive to be fitted. Resigned to never seeing his latest
creations again, Andy made his way to one of the

mockingly intact Macs in Apple’s store, and proceeded
to post to his blog.

Chapter 2: A drive held hostage
Meanwhile, at Linux Voice HQ, a Raspberry Pi was
grepping its way through the internet. It paused to
parse Andy’s message, before triggering the launch of
a foam dart and the careering dance of an ice-cream
tub with wheels. This was our signal to leap tigerish
into action.

“Somebody on the internet’s got a hard drive
problem!” cried our illustrious leader, his fingers
already walking over to a pile of Linux CDs as he
contemplated his rescue plan.

“But it’s only a Mac user,” replied a cynical voice
from the corner, rising on a column of solder fumes
and flux.

“We’re better than that!” came the response. “We
should be prepared to help our fellow man wherever
we can. Besides, it’s a good opportunity to see how
effective Linux’s HFS+ support is.”

So we contacted Andy to offer our meagre skills in
trying to recover his work from the drive, just as soon
as he received it back from Apple.

You might expect that, having paid Apple over
£200 to replace the hard drive, the old disk would
be returned with the refurbished machine. Instead
Apple demanded a ransom (our term, not theirs) of
an extra £90 for its return! At first Andy was reluctant
to increase his spend to almost £300, but when we
pointed out that his credit card details, usernames
and passwords would soon be in the hands of some
third party salvage company, he decided to pay the
ransom and reclaim the drive. Any data we could get
off it would be a bonus.

When the disk arrived our first step was a visual
inspection. We’ve seen several drives rendered
useless by bad power supplies, but with no obvious
burn marks or charred components on the visible
side of the drive’s circuit board, we connected it to
our recovery machine. Attaching it straight to the
motherboard would give us the fastest transfer
speeds, but unseen electrical problems would be
more likely to damage the host machine. We chose,
instead, to place it into an external drive caddy,
to provide a little extra electrical insulation, at the
expense of limiting the data transfer to USB2 speeds.

We plugged in the USB connector and to our delight
the drive was picked up instantly, our Mate desktop

DDRESCUE: SALVAGE DATA
FROM DAMAGED DISKS
How a GNU and a penguin rescued a bear from a broken hard drive
and the clutches of the evil empire.

 TUTORIAL

82

WHY DO THIS?
• Earn respect and

admiration by
recovering ‘lost’ data.

• Learn about disk
images.

• Remind yourself that it’s
time to make another
backup!

The scorch marks show
where a single bad PSU
simultaneously destroyed
the electronics of both
these drives.

MARK CRUTCH

PRO TIP
Some distros’ repositories
contain both dd_rescue
and GNU ddrescue, so
double-check which one
you’re installing. Debian
derivatives use gddrescue
as the package name for
the GNU version and
ddrescue for
Kurt Garloff’s dd_rescue
command.

LV013 082 Tutorial ddrescue.indd 82 06/02/2015 10:17

DDRESCUE TUTORIAL

www.linuxvoice.com

promptly opening a window showing the drive’s
contents. This told us that the device was basically
working, and we listened for the tell-tale sounds of
mechanical issues emanating from the disk’s moving
components. We also took the opportunity to examine
the structure of the drive using Mate’s ‘Disks’ program
and found that there were three partitions: ‘boot’, ‘data’
and ‘recovery’.

With everything appearing – and sounding – as a
good drive should, we guessed that the problem was
down to a few bad sectors that had been enough to
annoy OS X. With no idea where on the disk those bad
sectors might lie, it would be foolish to simply copy
the data using the normal desktop tools, so we opted
to create a full disk image to work with. Now we ask
you, honoured reader, to imagine the strumming of a
harp and a wobbly fade effect, as we take a break in
our narrative to switch to the flashback section…

Chapter 3: A tale of four DDs
As the soft sound of the harp dwindles to nothing, we
find ourselves at the dawn of time. Okay, a little after
the dawn of time, but still pretty early in the annals of
history. And, of course, we mean shortly after the
dawn of “Unix time” – 1 January 1970.

Back in those early days of Unix the dd command
was created as a means of copying blocks of data
between devices. You can read more about it in Linux
Voice #08, but it falls into our story because it’s a
classic method for cloning from a drive to an image
file. Because dd deals with blocks of data directly, it
can be used to create a sector-for-sector clone of a
drive even if it has foreign partitions. Unfortunately the
way dd works makes it less than ideal for recovery
tasks: it aborts on read errors, for example, which

is definitely not what you want when dealing with a
suspect drive.

Years later, building on the name and basic
premise of dd, Kurt Garloff created dd_rescue, a tool
specifically designed to recover data from failing
drives. It has error handling that enables it to keep
going where dd would fail. But that also means that
it can take a very long time to image a drive with
lots of read errors.
To speed up this
process, Valentin
Lab created a
Bash script called
dd_rhelp, which
optimises the way
in which dd_rescue performs its job. When dd_rescue
finds errors dd_rhelp makes it re-start at a later sector,
hoping to find another good section of the drive,
while keeping a log of the recovered parts of the drive
so that it can work out which ones still need to be
revisited. In this way it aims to recover the readable
parts of the drive as quickly as possible, before going
back to areas that may not yield any useful results.

It seemed that the combination of dd_rescue and
dd_rhelp is just what we needed, but there was one
more contender to consider: the confusingly named
ddrescue (without the underscore).

Officially known as “GNU ddrescue”, ddrescue aims
to do the job of the dd_rescue/dd_rhelp combination,
but in a single application. It keeps a log file of its
progress, and attempts to speed through the readable
data on a drive as quickly as possible, coming back to
bad areas later. It can be stopped and then resumed
at another time, and you can run it repeatedly without
affecting previously recovered blocks. On our Linux
Mint box, sudo apt-get install gddrescue was the
right invocation to install it. With our weapon of choice
in place, it’s time to return to our adventure. Cue harp
and wobbly fade as we head back to the present day…

83

The first pass took 28
hours. Thankfully the
subsequent runs only took
minutes.

PRO TIP
Use Ctrl+C to stop
ddrescue. Provided you
use a log file you can just
start it again later and it
will resume from where it
left off. This even works
if your machine crashes
mid-recovery!

Alternative tools
During this little adventure we used the Mate Disks
application. This was formerly known as Gnome Disk
Utility or Palimpsest, and is available in most Gnome-
derived desktop environments. If you’re using a different
environment you can still do everything in the article, but
you’ll need an alternative set of tools.

For simply looking at the partition structure of a disk or
mounted image, the venerable fdisk command line tool is
present on almost all distributions, as is the GNU parted
application. If you prefer a GUI then GParted is a great
GTK front-end to parted, or you might prefer the KDE
Partition Manager, which also uses GNU’s libparted library
under the hood.

Mounting a partition within a full disk image is a little
more tricky, with a general lack of GUI tools. It is possible
to manually calculate the start position of your partition,
then use it as an offset to the mount command. A less
masochistic option is the kpartx utility, which can list
partitions in a disk image and mount them all for you,
without the need for maths.
kpartx -av hard_drive.img

This will mount all the partitions to devices under /dev/
mapper in the filesystem – see the kpartx man page for
more details. Once you’re done remember to delete the
partition mapping and unmount the image:
kpartx -d hard_drive.img

“dd can be used to create a
sector-for-sector clone of a drive
even if it has foreign partitions. ”

LV013 082 Tutorial ddrescue.indd 83 06/02/2015 10:17

TUTORIAL DDRESCUE

www.linuxvoice.com84

Chapter 4: An ursine rescue
With Andy’s drive showing up as /dev/sdb on our
penguin-powered machine it was time to send
ddrescue stampeding in to flush out the easily
recoverable data. We just had to specify the source
drive followed by the names of the image and log files.
Note that the command is ddrescue, even though the
package we installed was gddrescue.
sudo ddrescue /dev/sdb hard_drive.img rescue_log

To our dismay the first errors arrived quickly. The
errsize figure in the output grew rapidly. 40,000
bytes… 50,000… then at just over 60kB the figure
stopped increasing. Could we really have been so
lucky? Was the damaged data confined solely to the
boot partition, meaning that Andy’s personal files
were all intact? We wouldn’t know the answer for
some time – over 28 hours at USB2 speed – when
ddrescue finished its first pass.

The errsize still stood at 60kB!
We didn’t want anything from the boot partition,

so there was no real need to continue. But we were
curious to discover just how much ddrescue might be
able to recover from those damaged sectors. We let it
run on, continuing through its remaining phases, and
quickly the errsize dropped to about 20kB.

20kB of bad data after just a single run was
certainly impressive. But stubborn sectors can
sometimes be persuaded to give up their data if you
just ask them often enough, so we ran ddrescue a
second time, instructing it to retry each bad sector up
to three times.
sudo ddrescue -r3 /dev/sdb hard_drive.img rescue_log

That recovered another half a kilobyte of data.
Perhaps we could surprise the drive into responding
by sneaking up on it from the other direction? Adding
-R to the command told it to read the sectors in
reverse order, working back into the damaged areas.

sudo ddrescue -R -r3 /dev/sdb hard_drive.img rescue_log
Almost 15kB was recovered by that approach,

leaving us with only 5,120 bytes of unreadable data.
We tried a few more passes, but no additional data
was forthcoming. Still, 5kB of bad data seemed pretty
good to us – and as it was all on the boot partition
we were confident that Bertie Bear would live to fight
another day. Had the errors been on the data partition
then we might have persevered a little more. With
any suspect drive, however, there’s always a danger
that you’ll speed up the degradation of the device,
so the rule should usually be to get as much data as
possible, as quickly as you can, and only spend extra
time on stubborn sectors if you really need to.

Chapter 5: A bear in a gilded cage
Although we now had an image of the drive to work
with, in some respects we’d actually taken a step
backwards. Whereas we had previously been able to
access the files on the drive directly from the desktop,
now the crown jewels we sought were trapped inside
a partition which was in turn inside a disk image.

We were only really interested in one of the three
partitions. Had we imaged each one individually
we would be able to mount it directly using Linux’s
loopback interface. But we’d imaged a whole drive,
with partitions inside it. We needed a way to tell Linux
to mount the drive, then mount the partitions within it,
before we could gain access to the files themselves.

It turns out that Mate’s Disks application has a
secret ability. It does such a god job of looking like
a simple, single dialog application that few people
notice it has a menu bar, hiding in plain sight. Clicking
on the lone menu reveals that it holds an entry that
reads “Attach Disk Image”.

Using that option to attach our disk image
immediately placed it into the list of drives alongside

Yes, that bit of text in the
corner that says “Disks” is
actually a menu.

PRO TIP
dd, dd_rescue and
ddrescue all use different
command line options
and parameters, so make
sure you know which one
you’re using, as a mistake
could be disastrous.

PRO TIP
Sometimes a damaged
drive is more cooperative
when it’s had a chance
to cool down. Stop
ddrescue, detach the
drive for a while, then
reattach and resume a
little later.

LV013 082 Tutorial ddrescue.indd 84 06/02/2015 10:17

DDRESCUE TUTORIAL

www.linuxvoice.com 85

our other, physical devices. Selecting it populated the
rest of the window with the same overview of the
partitions as we had previously seen with the real
drive. Then we selected the data partition and clicked
the “mount” button. A link appeared, proclaiming the
path to the mount point. With some scepticism we
clicked the link, paused for a second, then released a
sigh of relief as a window opened before us, displaying
the contents of Andy’s drive in all its Mac-based glory.

You would be forgiven for thinking that the rest
was easy. But this is the tale of data recovery across
disparate operating systems, and for all the hubris of
Silicon Valley the truth is that computers rarely make
things that straightforward. Quickly we were stymied
by permissions issues preventing us accessing all the
files we wanted.

The problem is that Linux’s HFS+ support is a
little too good. As OS X is a Unix system at heart, so
its filesystem carries with it all the finer details of
ownership and access rights that you might expect
from a Linux-native format. On the Linux box our user
ID was 1000. Andy’s Mac had given him an ID of 500
– and that ID was gladly honoured by Linux, denying
us access to many of the files. In a pique of laziness
we used sudo to launch Mate’s Caja file manager,
elevating ourselves to a position of computer
godhood, so that trivialities like file permissions would
no longer impede us. But ask yourself, dear reader,
who among you would not have taken the same

approach, so long as you thought that nobody was
looking?
sudo caja --no-desktop

The external drive that Andy had sent us was
formatted using Microsoft’s NTFS filesystem – which
doesn’t preserve Unix permissions. Knowing that
OS X is quite capable of reading from such a drive, we
just selected everything in Andy’s home directory and
dragged it straight to the external drive, assured that
the pesky user ID wouldn’t be preserved, so wouldn’t
cause Andy a problem later. Finally Bertie Bear was
freed from captivity.

Epilogue
A few days later we received news that Andy was able
to read the files from the backup drive. Andy’s files
were intact, and he had learned a vital lesson about
making backups. We had discovered a little more
about ddrescue and how to recover data from inside a
partition in a disk image. And we had a rip-roaring
adventure to write up for Linux Voice.

Thanks to our efforts, Bertie Bear and the Dagger of a
Thousand Souls, Volume 3 was released on schedule.
Interested readers can find this, and the previous two
instalments at http://bertiebear.bigcartel.com.

But alas! as is so often the case in such tales, the
antagonist of our story still lives on and continues
with their evil ways. Who knows how many drives are
being held hostage by Apple and their ilk? Despite our
slight dramatisation it really wasn’t too hard to get
Andy’s personal data from his drive. Imagine what
that means for all the “dead” drives that Apple has
sent for salvage, or for those that grace the listings of
Ebay, that fill the shelves of pawn shops, or that reside
in the carcasses of abandoned computers at rubbish
dumps across the land. Remember this tale the next
time you’re tempted to let an old hard drive out of your
hands. Oh, and one final thing: go and make a backup.
Now. We can’t always be there to save you.

Mark Crutch has been helping the world through Linux for a
while, but more importantly, he’s one half of the team that
creates the Elvie cartoon in our letters pages: peppertop.com.

When recovery gets tough
We were lucky with this recovery job because the damaged
sectors were all in an unneeded partition. But what would we
have done if the damage had been to a partition we wanted?
In any data recovery situation you should always make a
disk image first, rather than working directly on the suspect
drive, so the ddrescue step would be similar – but we would
probably have been a little more careful in our subsequent
runs to recover as much as possible. The most likely result
would be a readable disk image with some missing data. In
that case it’s simply time to keep your fingers crossed that the
rogue bytes aren’t in any files you actually want.

If the partition information itself is unrecoverable it’s time
to install TestDisk and PhotoRec, a pair of applications written
by Christophe Grenier. These are often bundled together:
installing them both on a Debian-based system just requires a
single sudo apt-get install testdisk command.

TestDisk (though the executable name is testdisk) can be
used to recover lost and damaged partitions by analysing the
disk structure and recognising a number of partition types.
If TestDisk is unable to recover the partition, PhotoRec can
often recover files at an even lower level. Despite its name,
PhotoRec can find more than just photos: it understands an
extensive list of file types, and it’s possible to add your own
file signatures should you need something more esoteric.
It works by reading blocks from the disk or image directly,
so can recover files even if the partition format is unknown.
PhotoRec only works reliably on unfragmented data, though,
so don’t expect miracles when dealing with a well-used drive
that’s full to bursting.

You can find out more about TestDisk and PhotoRec,
including worked examples, at Christophe’s website:
www.cgsecurity.org.

PRO TIP
You can use GNU
ddrescue as a
replacement for dd in
a lot of cases – such
as writing an OS to an
SD card for use in a
Raspberry Pi. They will
do the same job, but
ddrescue provides more
feedback as it progresses.

At last Bertie could relax with a drink, now he was back at
home in Photoshop on Andy’s Mac.

LV013 082 Tutorial ddrescue.indd 85 06/02/2015 10:17

